Skip to main content

Production Considerations

This guide covers production best practices, security, monitoring, and operational considerations for running AnonDocs in production environments.

Security Best Practices

Network Security

Run Behind Reverse Proxy

Always use a reverse proxy (Nginx, Caddy, Traefik) in front of AnonDocs:

  • ✅ SSL/TLS termination
  • ✅ Rate limiting
  • ✅ DDoS protection
  • ✅ Request logging
  • ✅ IP whitelisting if needed

Network Isolation

For sensitive deployments:

  • Run in isolated network segments
  • Use VPN or private networks for LLM provider communication
  • Consider air-gapped deployments for maximum security

Firewall Configuration

# Allow only necessary ports
ufw allow 80/tcp # HTTP (reverse proxy)
ufw allow 443/tcp # HTTPS (reverse proxy)
ufw deny 3000/tcp # Block direct access to AnonDocs

Authentication & Authorization

API Authentication

Implement authentication for API access:

// Example: API key middleware
const authenticate = (req, res, next) => {
const apiKey = req.headers['x-api-key'];
if (apiKey !== process.env.API_KEY) {
return res.status(401).json({ error: 'Unauthorized' });
}
next();
};

Rate Limiting

Configure rate limiting to prevent abuse:

# Nginx rate limiting
limit_req_zone $binary_remote_addr zone=api_limit:10m rate=10r/s;

location /api/ {
limit_req zone=api_limit burst=20 nodelay;
proxy_pass http://localhost:3000;
}

IP Whitelisting

For internal-only deployments:

location / {
allow 10.0.0.0/8;
allow 192.168.0.0/16;
deny all;
proxy_pass http://localhost:3000;
}

Data Security

No Data Persistence

AnonDocs is designed to process data in memory only:

  • ✅ Files are immediately deleted after processing
  • ✅ No database storage
  • ✅ No file system persistence
  • ✅ All processing happens in memory

Secure File Upload Limits

Configure upload size limits:

client_max_body_size 50M;

Input Validation

Ensure all inputs are validated:

  • File type validation
  • File size limits
  • Content validation
  • Malicious file detection

Environment Variables Security

Never Commit Secrets

# .gitignore
.env
.env.production
*.key
*.pem

Use Secret Management

For Kubernetes:

apiVersion: v1
kind: Secret
metadata:
name: anondocs-secrets
type: Opaque
stringData:
API_KEY: "your-secret-key"

For Docker:

docker run -d \
--env-file .env.production \
--env-file .env.secrets \
anondocs

Rotate Secrets Regularly

  • Rotate API keys quarterly
  • Update LLM provider credentials
  • Review access logs regularly

Performance Optimization

Resource Allocation

CPU and Memory

# Kubernetes resource requests/limits
resources:
requests:
memory: "1Gi"
cpu: "1000m"
limits:
memory: "4Gi"
cpu: "4000m"

GPU Allocation (if available)

resources:
limits:
nvidia.com/gpu: 1

Caching Strategies

While AnonDocs doesn't store data, consider:

  • LLM Response Caching: Cache LLM responses for similar inputs (be careful with PII)
  • Model Loading: Keep models in memory for faster inference
  • Connection Pooling: Reuse LLM provider connections

Load Balancing

For high availability:

upstream anondocs_backend {
least_conn;
server anondocs-1:3000;
server anondocs-2:3000;
server anondocs-3:3000;
}

server {
location / {
proxy_pass http://anondocs_backend;
}
}

Monitoring & Observability

Health Monitoring

Health Check Endpoint

# Automated health checks
curl -f http://localhost:3000/health || alert

Kubernetes Health Checks

livenessProbe:
httpGet:
path: /health
port: 3000
initialDelaySeconds: 30
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3

readinessProbe:
httpGet:
path: /health
port: 3000
initialDelaySeconds: 10
periodSeconds: 5

Logging

Structured Logging

Configure structured logging for better observability:

// Example logging configuration
import winston from 'winston';

const logger = winston.createLogger({
format: winston.format.json(),
transports: [
new winston.transports.File({ filename: 'error.log', level: 'error' }),
new winston.transports.File({ filename: 'combined.log' })
]
});

Log Retention

  • Keep logs for compliance requirements (e.g., 90 days)
  • Never log sensitive data or PII
  • Use log rotation to manage disk space

Metrics Collection

Key Metrics to Monitor

  • Request rate and latency
  • Error rates
  • LLM provider response times
  • Memory and CPU usage
  • Processing queue depth
  • Chunk processing times

Prometheus Integration

# Example metrics endpoint
/metrics:
prometheus: true

Backup & Disaster Recovery

Configuration Backups

# Backup configuration
cp .env.production .env.production.backup

Infrastructure as Code

Store deployment configurations in version control:

  • Docker Compose files
  • Kubernetes manifests
  • Infrastructure scripts
  • Configuration templates

Disaster Recovery Plan

  1. Documentation: Document your deployment architecture
  2. Backup Strategy: Regular backups of configurations
  3. Recovery Testing: Test recovery procedures regularly
  4. Incident Response: Have a plan for security incidents

Compliance Considerations

GDPR Compliance

AnonDocs is designed for GDPR compliance:

  • ✅ No data retention
  • ✅ Local processing only
  • ✅ Open source and auditable
  • ✅ No third-party data sharing

HIPAA Considerations

For healthcare deployments:

  • Deploy in HIPAA-compliant infrastructure
  • Use encrypted connections (TLS)
  • Implement access controls
  • Maintain audit logs
  • Regular security assessments

Regular Security Audits

  • Review dependencies for vulnerabilities
  • Perform penetration testing
  • Security code reviews
  • Update dependencies regularly

Operational Best Practices

Update Strategy

Version Pinning

FROM node:18-alpine
# Pin specific versions for stability

Update Procedures

  1. Test updates in staging environment
  2. Review changelog for breaking changes
  3. Backup configuration before updating
  4. Deploy during maintenance windows
  5. Monitor after deployment

Capacity Planning

Monitor Resource Usage

  • Track CPU and memory over time
  • Identify peak usage patterns
  • Plan for growth

Scaling Triggers

Set up alerts for:

  • High CPU usage (>80%)
  • High memory usage (>85%)
  • Increased error rates
  • Slow response times

Documentation

Maintain documentation for:

  • Deployment architecture
  • Configuration details
  • Emergency contacts
  • Recovery procedures
  • Known issues and workarounds

Troubleshooting Production Issues

Common Issues

High Memory Usage

  • Reduce CHUNK_SIZE
  • Disable ENABLE_PARALLEL_CHUNKS
  • Use smaller LLM models
  • Scale horizontally

Slow Response Times

  • Check LLM provider performance
  • Review network latency
  • Optimize chunk processing
  • Consider caching strategies

Connection Errors

  • Verify LLM provider is accessible
  • Check network connectivity
  • Review firewall rules
  • Test health endpoints

Incident Response

  1. Identify: Determine the scope of the issue
  2. Contain: Prevent further impact
  3. Resolve: Fix the root cause
  4. Learn: Post-mortem and improvements

Next Steps


For production support, visit our GitHub Discussions or GitHub Issues.

Proudly made byAI SmartTalkAI SmartTalk