Production Considerations
This guide covers production best practices, security, monitoring, and operational considerations for running AnonDocs in production environments.
Security Best Practices
Network Security
Run Behind Reverse Proxy
Always use a reverse proxy (Nginx, Caddy, Traefik) in front of AnonDocs:
- ✅ SSL/TLS termination
- ✅ Rate limiting
- ✅ DDoS protection
- ✅ Request logging
- ✅ IP whitelisting if needed
Network Isolation
For sensitive deployments:
- Run in isolated network segments
- Use VPN or private networks for LLM provider communication
- Consider air-gapped deployments for maximum security
Firewall Configuration
# Allow only necessary ports
ufw allow 80/tcp # HTTP (reverse proxy)
ufw allow 443/tcp # HTTPS (reverse proxy)
ufw deny 3000/tcp # Block direct access to AnonDocs
Authentication & Authorization
API Authentication
Implement authentication for API access:
// Example: API key middleware
const authenticate = (req, res, next) => {
const apiKey = req.headers['x-api-key'];
if (apiKey !== process.env.API_KEY) {
return res.status(401).json({ error: 'Unauthorized' });
}
next();
};
Rate Limiting
Configure rate limiting to prevent abuse:
# Nginx rate limiting
limit_req_zone $binary_remote_addr zone=api_limit:10m rate=10r/s;
location /api/ {
limit_req zone=api_limit burst=20 nodelay;
proxy_pass http://localhost:3000;
}
IP Whitelisting
For internal-only deployments:
location / {
allow 10.0.0.0/8;
allow 192.168.0.0/16;
deny all;
proxy_pass http://localhost:3000;
}
Data Security
No Data Persistence
AnonDocs is designed to process data in memory only:
- ✅ Files are immediately deleted after processing
- ✅ No database storage
- ✅ No file system persistence
- ✅ All processing happens in memory
Secure File Upload Limits
Configure upload size limits:
client_max_body_size 50M;
Input Validation
Ensure all inputs are validated:
- File type validation
- File size limits
- Content validation
- Malicious file detection
Environment Variables Security
Never Commit Secrets
# .gitignore
.env
.env.production
*.key
*.pem
Use Secret Management
For Kubernetes:
apiVersion: v1
kind: Secret
metadata:
name: anondocs-secrets
type: Opaque
stringData:
API_KEY: "your-secret-key"
For Docker:
docker run -d \
--env-file .env.production \
--env-file .env.secrets \
anondocs
Rotate Secrets Regularly
- Rotate API keys quarterly
- Update LLM provider credentials
- Review access logs regularly
Performance Optimization
Resource Allocation
CPU and Memory
# Kubernetes resource requests/limits
resources:
requests:
memory: "1Gi"
cpu: "1000m"
limits:
memory: "4Gi"
cpu: "4000m"
GPU Allocation (if available)
resources:
limits:
nvidia.com/gpu: 1
Caching Strategies
While AnonDocs doesn't store data, consider:
- LLM Response Caching: Cache LLM responses for similar inputs (be careful with PII)
- Model Loading: Keep models in memory for faster inference
- Connection Pooling: Reuse LLM provider connections
Load Balancing
For high availability:
upstream anondocs_backend {
least_conn;
server anondocs-1:3000;
server anondocs-2:3000;
server anondocs-3:3000;
}
server {
location / {
proxy_pass http://anondocs_backend;
}
}
Monitoring & Observability
Health Monitoring
Health Check Endpoint
# Automated health checks
curl -f http://localhost:3000/health || alert
Kubernetes Health Checks
livenessProbe:
httpGet:
path: /health
port: 3000
initialDelaySeconds: 30
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3
readinessProbe:
httpGet:
path: /health
port: 3000
initialDelaySeconds: 10
periodSeconds: 5
Logging
Structured Logging
Configure structured logging for better observability:
// Example logging configuration
import winston from 'winston';
const logger = winston.createLogger({
format: winston.format.json(),
transports: [
new winston.transports.File({ filename: 'error.log', level: 'error' }),
new winston.transports.File({ filename: 'combined.log' })
]
});
Log Retention
- Keep logs for compliance requirements (e.g., 90 days)
- Never log sensitive data or PII
- Use log rotation to manage disk space
Metrics Collection
Key Metrics to Monitor
- Request rate and latency
- Error rates
- LLM provider response times
- Memory and CPU usage
- Processing queue depth
- Chunk processing times
Prometheus Integration
# Example metrics endpoint
/metrics:
prometheus: true
Backup & Disaster Recovery
Configuration Backups
# Backup configuration
cp .env.production .env.production.backup
Infrastructure as Code
Store deployment configurations in version control:
- Docker Compose files
- Kubernetes manifests
- Infrastructure scripts
- Configuration templates
Disaster Recovery Plan
- Documentation: Document your deployment architecture
- Backup Strategy: Regular backups of configurations
- Recovery Testing: Test recovery procedures regularly
- Incident Response: Have a plan for security incidents
Compliance Considerations
GDPR Compliance
AnonDocs is designed for GDPR compliance:
- ✅ No data retention
- ✅ Local processing only
- ✅ Open source and auditable
- ✅ No third-party data sharing
HIPAA Considerations
For healthcare deployments:
- Deploy in HIPAA-compliant infrastructure
- Use encrypted connections (TLS)
- Implement access controls
- Maintain audit logs
- Regular security assessments
Regular Security Audits
- Review dependencies for vulnerabilities
- Perform penetration testing
- Security code reviews
- Update dependencies regularly
Operational Best Practices
Update Strategy
Version Pinning
FROM node:18-alpine
# Pin specific versions for stability
Update Procedures
- Test updates in staging environment
- Review changelog for breaking changes
- Backup configuration before updating
- Deploy during maintenance windows
- Monitor after deployment
Capacity Planning
Monitor Resource Usage
- Track CPU and memory over time
- Identify peak usage patterns
- Plan for growth
Scaling Triggers
Set up alerts for:
- High CPU usage (>80%)
- High memory usage (>85%)
- Increased error rates
- Slow response times
Documentation
Maintain documentation for:
- Deployment architecture
- Configuration details
- Emergency contacts
- Recovery procedures
- Known issues and workarounds
Troubleshooting Production Issues
Common Issues
High Memory Usage
- Reduce
CHUNK_SIZE - Disable
ENABLE_PARALLEL_CHUNKS - Use smaller LLM models
- Scale horizontally
Slow Response Times
- Check LLM provider performance
- Review network latency
- Optimize chunk processing
- Consider caching strategies
Connection Errors
- Verify LLM provider is accessible
- Check network connectivity
- Review firewall rules
- Test health endpoints
Incident Response
- Identify: Determine the scope of the issue
- Contain: Prevent further impact
- Resolve: Fix the root cause
- Learn: Post-mortem and improvements
Next Steps
- 📚 Review API Reference for integration details
- 🔒 Check Privacy & Security documentation
- 🤖 Configure LLM Providers
For production support, visit our GitHub Discussions or GitHub Issues.